What is a fraction?

BEAM

January 13, 2016

Problems:

What is a fraction?

 $\frac{a}{b}$ represents the number $a \div b$.

The top of the fraction is the **numerator**. The bottom is the **denominator**. The denominator can never be 0, because you cannot divide by 0.

Two different fractions can be the same number. Since $6 \div 2 = 3$ and $12 \div 4 = 3$,

$$\frac{6}{2} = \frac{12}{4}$$
.

These are actually exactly the same thing, just written differently, in the same way that "bunny" and "rabbit" are the same thing, just written differently.

Because $a \div a = 1$ for any a which is not 0, $\frac{a}{a} = 1$.

Two fractions are the same if you can multiply the numerator and denominator of one of them by the same number to get the other. For example:

$$\frac{2}{3} = \frac{8}{12} \qquad \text{because} \qquad \frac{2}{3} \times \frac{4}{4} = \frac{8}{12}.$$

$$\frac{\frac{2}{3}}{\frac{9}{3}} = \frac{2}{9} \qquad \text{because} \qquad \frac{\frac{2}{3}}{\frac{9}{3}} \times \frac{3}{3} = \frac{2}{9}.$$

$$\frac{12}{8} = \frac{3}{2} \qquad \text{because} \qquad \frac{12}{8} \times \frac{\frac{1}{4}}{\frac{1}{4}} = \frac{3}{2}.$$

For any of these, we could have seen the same thing by multiplying in the other direction. For example, $\frac{3}{2} \times \frac{4}{4} = \frac{12}{8}$ and so $\frac{3}{2} = \frac{12}{8}$.

As you just saw, we can have fractions in the numerator or denominator. That's because a fraction is just a number, and any number can go into the numerator or denominator!

1

For any a, $\frac{a}{1} = a$ because $a \div 1 = a$.

1. Write in fraction form the shaded part of each shape.

- (g)
- 2. Problem 4.1.2 (page 155): Compute $\frac{16+6}{4-2}$.
- 3. Problem 4.1.4 (page 155): Which integer is closest to $\frac{43}{7}$?
- 4. At SPMPS 2012, there were 38 students. Twenty of them were girls and eighteen were boys. Jessica concludes that the fraction of the students that were girls was $\frac{38}{20} = \frac{19}{10}$. Was she right or wrong? If you think she was right, explain why. If you think she was wrong, give a different answer and explain why yours is correct.
- 5. What fraction of 96 is 64? Answer as a fraction in simplest form.
- 6. For each of the following, figure out which is larger in your head without making a common denominator. If you're not sure how to do that, ask a staff member.
 - (a) $\frac{6}{3}$ vs. $\frac{8}{5}$.
 - (b) $\frac{1}{10}$ vs. $\frac{1}{6}$.
 - (c) $\frac{14}{24}$ vs. $\frac{17}{35}$.

(d)
$$\frac{4}{5}$$
 vs. $\frac{5}{6}$.

- 7. Fill in <, >, or =. Try to figure these out without putting them over a common denominator or "cross-multiplying" use your intuition about fractions. Again, if you're not sure, ask one of us.
 - (a) $\frac{1}{3}$ $\frac{1}{4}$
 - (b) 4 $\frac{15}{4}$
 - (c) $\frac{250}{350}$ $\frac{10}{14}$
 - (d) $\frac{18}{5}$ $\frac{200}{111}$
- 8. Problem 4.1.7 (page 155): Find three fractions that are equal to $\frac{3}{5}$.
- 9. Place $\frac{4}{6}$ on the number line:

- 10. Find a fraction between $\frac{1}{9}$ and $\frac{1}{8}$.
- 11. Write $\frac{7}{12}$ as a fraction with denominator 132.