Rules of Exponents

BEAM

January 13, 2016

Problems:

Rules of Exponents

Consider $5^{12} \cdot 5^7$. This expression tells you to multiply together $12\ 5$'s, and then to multiply in 7 more 5's. In total, that is $19\ 5$'s, so $5^{12} \cdot 5^7 = 5^{19}$. This is a general rule:

$$a^m \cdot a^n = a^{m+n}.$$

Now consider $(5^3)^{10}$. This tells you to multiply together 3 5's, and then to take the result and multiply it by itself 10 times. In the end, we get

$$\underbrace{5 \cdot 5 \cdot 5}_{5^3} \cdot \underbrace{5 \cdot 5$$

That's 30 5's in total, so $(5^3)^{10} = 5^{30}$. This is also a general rule:

$$(a^m)^n = a^{m \cdot n},$$

because it is n a^m 's which is $m \cdot n$ a's.

Finally, take a look at $3^5 \cdot 2^5$. If we look at the whole thing multiplied out, it's

$$\underbrace{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}_{3^5} \cdot \underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{2^5}.$$

We can move around the 2's and 3's to get

$$\underbrace{2 \cdot 3}_{6} \cdot \underbrace{2 \cdot 3}_{6} \cdot \underbrace{2 \cdot 3}_{6} \cdot \underbrace{2 \cdot 3}_{6} \cdot \underbrace{2 \cdot 3}_{6} = 6^{5}.$$

So $3^5 \cdot 2^5 = 6^5$. This is also a general rule:

$$a^n \cdot b^n = (ab)^n$$
.

1

1. Express as a number raised to a single power:

(a)
$$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$$

- (b) $18 \cdot 18^{25}$
- (c) $2^4 \cdot 2^8$
- (d) $5^7 \cdot 8^7$
- (e) $2^{33} \cdot 2^{12} \div 2^8$
- (f) $3^5 \cdot 9^5 \cdot 27^5$
- (g) $(5^7)^3$
- (h) $4^5 \cdot 7^{10}$
- (i) $((14^3)^3)^3$
- (j) $2^{34} \cdot 2^{20} \cdot (3^2)^{27}$
- (k) $2^5 + 2^5$
- (I) $4^5 + 4^5 + 4^5 + 4^5$
- (m) $2 \cdot 19^{33} + 17 \cdot 19^{33}$
- (n) $2^{100} 2^{99}$
- (o) $2^{100} 2^{99} 2^{98}$
- (p) $2^{100} 2^{99} 2^{98} \dots 2^{51} 2^{50}$
- 2. Problem 2.2.2 (page 72): Compute the difference between the square of the cube of 2 and the cube of the square of 2.
- 3. What is $5^{23} \div 5^{20}$?
- 4. Explain why dividing by a^b is the same as multiplying by a^{-b} .
- 5. Problem 2.4.4 (page 88): Find the integer k such that $3^3+3^3+3^3=243\cdot 3^k$. (Source: MATHCOUNTS)
- 6. Problem 2.4.5 (page 88): Express 2^{12} as a power of $\frac{1}{8}$.
- 7. Which is bigger and why: 2^{100} or 1,000,000?
- 8. Problem 2.1.10 (page 63): The sum $1^2+2^2+3^2+4^2+\cdots+25^2$ is equal to 5525. Evaluate $2^2+4^2+6^2+8^2+\cdots+50^2$. (Source: MOEMS)

Exponents and Fractions

If you did the Simplifying Fractions module, then you have already done these!

- 9. Simplify:
 - (a) $\frac{3^2}{3}$
 - (b) $\frac{3^3}{3}$

- (c) $\frac{3^3}{3^2}$
- (d) $\frac{124^{30}}{124^{19}}$
- (e) $\frac{50^9 \cdot 7}{50^8}$
- (f) $\frac{3^2 \cdot 5^8 \cdot 11^{14}}{3^4 \cdot 5^6 \cdot 11^{13} \cdot 13}$
- 10. Problem 4.5.3 (page 177): Simplify the following fractions, assuming a,b,m, and p are nonzero.
 - (a) $\frac{4a^3b}{2ab}$
 - (b) $\frac{8m^7p^{12}}{12m^5p^{15}}$
- 11. Problem 4.5.5 (page 177): Evaluate $\frac{42x^3y^6}{35x^2y^6}$ when $x=\frac{5}{4}$ and $y=\frac{2012}{2013}$.